Restoring hydrology and old-growth structures in a former production forest: modelling the long-term effects on biodiversity

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Restoring hydrology and old-growth structures in a former production forest : modelling the long-term effects on biodiversity. / Mazziotta, Adriano; Heilmann-Clausen, Jacob; Bruun, Hans Henrik; Fritz, Örjan; Aude, Erik; Tøttrup, Anders P.

In: Forest Ecology and Management, Vol. 381, 2016, p. 125-133.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Mazziotta, A, Heilmann-Clausen, J, Bruun, HH, Fritz, Ö, Aude, E & Tøttrup, AP 2016, 'Restoring hydrology and old-growth structures in a former production forest: modelling the long-term effects on biodiversity', Forest Ecology and Management, vol. 381, pp. 125-133. https://doi.org/10.1016/j.foreco.2016.09.028

APA

Mazziotta, A., Heilmann-Clausen, J., Bruun, H. H., Fritz, Ö., Aude, E., & Tøttrup, A. P. (2016). Restoring hydrology and old-growth structures in a former production forest: modelling the long-term effects on biodiversity. Forest Ecology and Management, 381, 125-133. https://doi.org/10.1016/j.foreco.2016.09.028

Vancouver

Mazziotta A, Heilmann-Clausen J, Bruun HH, Fritz Ö, Aude E, Tøttrup AP. Restoring hydrology and old-growth structures in a former production forest: modelling the long-term effects on biodiversity. Forest Ecology and Management. 2016;381:125-133. https://doi.org/10.1016/j.foreco.2016.09.028

Author

Mazziotta, Adriano ; Heilmann-Clausen, Jacob ; Bruun, Hans Henrik ; Fritz, Örjan ; Aude, Erik ; Tøttrup, Anders P. / Restoring hydrology and old-growth structures in a former production forest : modelling the long-term effects on biodiversity. In: Forest Ecology and Management. 2016 ; Vol. 381. pp. 125-133.

Bibtex

@article{fbeeba44c9d24281b924cce5368114cd,
title = "Restoring hydrology and old-growth structures in a former production forest: modelling the long-term effects on biodiversity",
abstract = "The biodiversity value of production forests is substantially lower than that of natural forests. This is related to differences in hydrology, stand age and amounts of old trees and deadwood. Using a predictive model framework we show that restoring hydrology and old-growth characteristics in a forest formerly managed for timber extraction results in changes to forest composition and structure, ultimately increasing its biodiversity value. We inventoried biodiversity and stand variables in 102 sample plots in a temperate mixed broadleaved forest, which is in focus of a LIFE+ programme aiming to restore hydrology and old-growth structure. We collected presence/absence data for four organism groups (vascular plants, epiphytic bryophytes and lichens, wood-inhabiting fungi) and measured environmental variables associated with species occurrence and influenced by restoration (dead or living tree characteristics, stand age, water level). We investigated biodiversity consequences of restoration towards pristine environmental characteristics by using a space-for-time substitution model. We evaluated how and through what mechanisms species richness is likely to react when pre-forestry hydrological conditions and old-growth structures are restored. The model results show that reversing the effects of a long history of management for timber extraction increased availability of suitable habitat, and hence the local species richness for three of four of the organism groups, compared to the pre-restoration conditions. Furthermore, the increase in soil moisture shifted the forest plots towards an alder carr, while the stand ageing process sustained the shade-tolerant beech despite its low tolerance for high soil humidity. Our prediction shows an increase in species richness for plants directly driven by the restoration of natural water level, and for fungi as an indirect effect of a change in suitable substrate availability. Lichens responded positively to both processes. Plants stabilized their richness levels earlier than tree-dwelling organisms, as water level recovered faster than old-growth structures. The projection of stable bryophytes richness values under restoration is potentially biased by their lower diversity and more limited affiliation to forest structural variation than other groups. We suggest applying our space-for-time approach as a tool to assess forest and biodiversity responses in similar restoration projects involving management actions of open-ended habitat creation, promoting development of natural processes in the long-term. This modelling tool turns to be especially relevant in dynamic habitats where the outcomes for biodiversity are uncertain.",
keywords = "Bryophytes, Forest restoration, Lichens, Space-for-time substitution, Vascular plants, Wood-inhabiting fungi",
author = "Adriano Mazziotta and Jacob Heilmann-Clausen and Bruun, {Hans Henrik} and {\"O}rjan Fritz and Erik Aude and T{\o}ttrup, {Anders P.}",
year = "2016",
doi = "10.1016/j.foreco.2016.09.028",
language = "English",
volume = "381",
pages = "125--133",
journal = "Forest Ecology and Management",
issn = "0378-1127",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Restoring hydrology and old-growth structures in a former production forest

T2 - modelling the long-term effects on biodiversity

AU - Mazziotta, Adriano

AU - Heilmann-Clausen, Jacob

AU - Bruun, Hans Henrik

AU - Fritz, Örjan

AU - Aude, Erik

AU - Tøttrup, Anders P.

PY - 2016

Y1 - 2016

N2 - The biodiversity value of production forests is substantially lower than that of natural forests. This is related to differences in hydrology, stand age and amounts of old trees and deadwood. Using a predictive model framework we show that restoring hydrology and old-growth characteristics in a forest formerly managed for timber extraction results in changes to forest composition and structure, ultimately increasing its biodiversity value. We inventoried biodiversity and stand variables in 102 sample plots in a temperate mixed broadleaved forest, which is in focus of a LIFE+ programme aiming to restore hydrology and old-growth structure. We collected presence/absence data for four organism groups (vascular plants, epiphytic bryophytes and lichens, wood-inhabiting fungi) and measured environmental variables associated with species occurrence and influenced by restoration (dead or living tree characteristics, stand age, water level). We investigated biodiversity consequences of restoration towards pristine environmental characteristics by using a space-for-time substitution model. We evaluated how and through what mechanisms species richness is likely to react when pre-forestry hydrological conditions and old-growth structures are restored. The model results show that reversing the effects of a long history of management for timber extraction increased availability of suitable habitat, and hence the local species richness for three of four of the organism groups, compared to the pre-restoration conditions. Furthermore, the increase in soil moisture shifted the forest plots towards an alder carr, while the stand ageing process sustained the shade-tolerant beech despite its low tolerance for high soil humidity. Our prediction shows an increase in species richness for plants directly driven by the restoration of natural water level, and for fungi as an indirect effect of a change in suitable substrate availability. Lichens responded positively to both processes. Plants stabilized their richness levels earlier than tree-dwelling organisms, as water level recovered faster than old-growth structures. The projection of stable bryophytes richness values under restoration is potentially biased by their lower diversity and more limited affiliation to forest structural variation than other groups. We suggest applying our space-for-time approach as a tool to assess forest and biodiversity responses in similar restoration projects involving management actions of open-ended habitat creation, promoting development of natural processes in the long-term. This modelling tool turns to be especially relevant in dynamic habitats where the outcomes for biodiversity are uncertain.

AB - The biodiversity value of production forests is substantially lower than that of natural forests. This is related to differences in hydrology, stand age and amounts of old trees and deadwood. Using a predictive model framework we show that restoring hydrology and old-growth characteristics in a forest formerly managed for timber extraction results in changes to forest composition and structure, ultimately increasing its biodiversity value. We inventoried biodiversity and stand variables in 102 sample plots in a temperate mixed broadleaved forest, which is in focus of a LIFE+ programme aiming to restore hydrology and old-growth structure. We collected presence/absence data for four organism groups (vascular plants, epiphytic bryophytes and lichens, wood-inhabiting fungi) and measured environmental variables associated with species occurrence and influenced by restoration (dead or living tree characteristics, stand age, water level). We investigated biodiversity consequences of restoration towards pristine environmental characteristics by using a space-for-time substitution model. We evaluated how and through what mechanisms species richness is likely to react when pre-forestry hydrological conditions and old-growth structures are restored. The model results show that reversing the effects of a long history of management for timber extraction increased availability of suitable habitat, and hence the local species richness for three of four of the organism groups, compared to the pre-restoration conditions. Furthermore, the increase in soil moisture shifted the forest plots towards an alder carr, while the stand ageing process sustained the shade-tolerant beech despite its low tolerance for high soil humidity. Our prediction shows an increase in species richness for plants directly driven by the restoration of natural water level, and for fungi as an indirect effect of a change in suitable substrate availability. Lichens responded positively to both processes. Plants stabilized their richness levels earlier than tree-dwelling organisms, as water level recovered faster than old-growth structures. The projection of stable bryophytes richness values under restoration is potentially biased by their lower diversity and more limited affiliation to forest structural variation than other groups. We suggest applying our space-for-time approach as a tool to assess forest and biodiversity responses in similar restoration projects involving management actions of open-ended habitat creation, promoting development of natural processes in the long-term. This modelling tool turns to be especially relevant in dynamic habitats where the outcomes for biodiversity are uncertain.

KW - Bryophytes

KW - Forest restoration

KW - Lichens

KW - Space-for-time substitution

KW - Vascular plants

KW - Wood-inhabiting fungi

U2 - 10.1016/j.foreco.2016.09.028

DO - 10.1016/j.foreco.2016.09.028

M3 - Journal article

AN - SCOPUS:84991386892

VL - 381

SP - 125

EP - 133

JO - Forest Ecology and Management

JF - Forest Ecology and Management

SN - 0378-1127

ER -

ID: 170191212