Utilizing museomics to trace the complex history and species boundaries in an avian-study system of conservation concern

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 1,89 MB, PDF-dokument

A taxonomic classification that accurately captures evolutionary history is essential for conservation. Genomics provides powerful tools for delimiting species and understanding their evolutionary relationships. This allows for a more accurate and detailed view on conservation status compared with other, traditionally used, methods. However, from a practical and ethical perspective, gathering sufficient samples for endangered taxa may be difficult. Here, we use museum specimens to trace the evolutionary history and species boundaries in an Asian oriole clade. The endangered silver oriole has long been recognized as a distinct species based on its unique coloration, but a recent study suggested that it might be nested within the maroon oriole-species complex. To evaluate species designation, population connectivity, and the corresponding conservation implications, we assembled a de novo genome and used whole-genome resequencing of historical specimens. Our results show that the silver orioles form a monophyletic lineage within the maroon oriole complex and that maroon and silver forms continued to interbreed after initial divergence, but do not show signs of recent gene flow. Using a genome scan, we identified genes that may form the basis for color divergence and act as reproductive barriers. Taken together, our results confirm the species status of the silver oriole and highlight that taxonomic revision of the maroon forms is urgently needed. Our study demonstrates how genomics and Natural History Collections (NHC) can be utilized to shed light on the taxonomy and evolutionary history of natural populations and how such insights can directly benefit conservation practitioners when assessing wild populations.

OriginalsprogEngelsk
TidsskriftHeredity
Vol/bind128
Udgave nummer3
Sider (fra-til)159-168
Antal sider10
ISSN0018-067X
DOI
StatusUdgivet - 2022

Bibliografisk note

Funding Information:
Footpad samples for genetic analyses were generously provided by American Museum of Natural History, New York (Paul Sweet, Tom Trombone, and Peter Capainolo), British Museum of Natural History (Hein Van Grouw and Mark Adams), Smithsonian National Museum of Natural History (Christopher M. Milensky), Natural History Museum of Denmark (Jan Bolding), and Swedish Museum of Natural History, Stockholm, Sweden (Ulf Johansson). MI acknowledges support from the Swedish Research Council (grant Nos. 2019-03900 and 621-2014-5113). The authors acknowledge support from the National Genomics Infrastructure in Stockholm funded by Science for Life Laboratory, the Knut and Alice Wallenberg Foundation and the Swedish Research Council, and SNIC/Uppsala Multidisciplinary Center for Advanced Computational Science for assistance with massively parallel sequencing and access to the UPPMAX computational infrastructure. Moreover, the authors extend special gratitude to Carolina Diaz Roman for illustrating the bird figures.

Publisher Copyright:
© 2022, The Author(s).

ID: 297059660