Protein sequences bound to mineral surfaces persist into deep time

Research output: Contribution to journalJournal articlepeer-review

Documents

  • Beatrice Demarchi
  • Shaun Hall
  • Teresa Roncal-Herrero
  • Colin L. Freeman
  • Jos Woolley
  • Molly K. Crisp
  • Julie Wilson
  • Roman Fischer
  • Benedikt M. Kessler
  • Rosa Rakownikow Jersie-Christensen
  • James Haile
  • Jessica Thomas
  • Curtis W. Marean
  • John Parkington
  • Samantha Presslee
  • Julia Lee-Thorp
  • Peter Ditchfield
  • Jacqueline F. Hamilton
  • Martyn W. Ward
  • Chunting Michelle Wang
  • Marvin D. Shaw
  • Terry Harrison
  • Manuel Domínguez-Rodrigo
  • Ross D. E. MacPhee
  • Amandus Kwekason
  • Michaela Ecker
  • Liora Kolska Horwitz
  • Michael Chazan
  • Roland Kröger
  • Jane Thomas-Oates
  • John H. Harding
  • Kirsty Penkman

Proteins persist longer in the fossil record than DNA, but the longevity, survival mechanisms and substrates remain contested. Here, we demonstrate the role of mineral binding in preserving the protein sequence in ostrich (Struthionidae) eggshell, including from the palaeontological sites of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By tracking protein diagenesis back in time we find consistent patterns of preservation, demonstrating authenticity of the surviving sequences. Molecular dynamics simulations of struthiocalcin-1 and -2, the dominant proteins within the eggshell, reveal that distinct domains bind to the mineral surface. It is the domain with the strongest calculated binding energy to the calcite surface that is selectively preserved. Thermal age calculations demonstrate that the Laetoli and Olduvai peptides are 50 times older than any previously authenticated sequence (equivalent to ~16 Ma at a constant 10°C).

Original languageEnglish
Article numbere17092
JournaleLife
Volume5
Number of pages50
ISSN2050-084X
DOIs
Publication statusPublished - 2016

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 166326974